アポスポリー性ギニアグラスから単離された アポミクシス性特異的遺伝子 ASG-1 による組換えイネの作出

豊元大希¹, 関 黎明³, 杉田 亘⁴, 濱口卓郎⁵, 岡部玲二⁵, 陳 蘭庄^{1,2*}

¹南九州大学大学院園芸学・食品科学研究科;²南九州大学環境園芸学科生物工学研究室; ³宮崎大学教育文化学部;⁴宮崎県総合農業試験場;⁵宮崎県庁

2016年10月1日受付;2017年2月1日受理

Transgenic rice plant regeneration of ASG-1, an apomixis-specific gene isolated from apomictic guinea grass (*Panicum maximum*)

Daiki Toyomoto¹, Liming Guan³, Toru Sugita⁴, Takuro Hamaguchi⁵, Reiji Okabe⁵, Lanzhuang Chen^{1,2*}

 ¹Graduated School of Horticultural and Food Science, Minami Kyushu University, 3764-1, Tatenocho, Miyakonojo city, Miyazaki, 885-0035, Japan; ²Laboratory of Biotechnology, Faculty of Environmental and Horticultural Sciences, Minami Kyusyu University, 3764-1, Tatenocho, Miyakonojo city, Miyazaki, 885-0035, Japan; ³Faculty of Education and Culture, University of Miyazaki, 1-1, Gakuen Kibanadai, Miyazaki, 889-2192, Japan; ⁴Miyazaki Prefectural Agricultural Station, 5805, Shimonaka, Sadowara, Miyazaki, 880-0212, Japan; ⁵Miyazaki Prefecture Office, 2-10-1, Tachibanatori-Higashi, Miyazaki, 880-8501, Japan

Received October 1, 2016; Accepted February 1, 2017

In our previous report, ASG-1, an apomixis-specific gene has been isolated from apomictic guinea grass (*Panicum maximum* Jacq.). In this study, to sequently analyze the function of the ASG-1, we used the combination of Agrobacterium-mediated transformation system and pSMA35H2-NG binary vector for transformation of ASG-1 to 'Nipponbare' of rice (*Oryza sativa* L.), and its embryo sac analysis of transgenic rice.

In this study, 1) As a preliminary experiment to test the efficiency of the combination of *Agrobac-terium*-mediated transformation system and pSMA35H2-NG binary vector, β -glucuronidase (GUS) reporter gene was expressed successfully in calli of rice and guinea grass used as a control. 2) And then, the transgenic rice plants of *ASG-1* were obtained from the culture of matured seed-derived calli using the transformation system same to GUS. 3) The putative transgenic natures of T₀ callus and T₁ rice plants were confirmed by PCR analysis using the primers designed according to the sequences of *ASG-1* and hygromycin B with restricted band patterns.

Key words: Apomixis, ASG-1 (apomixis-specific gene 1), guinea grass (*Panicum maximum* Jacq.), transgenic rice (*Oryza sativa* L.).

緒言

アポミクシスは、母親の遺伝子型だけが子供の世代 に伝わる様式である.この形質を実用化すれば、一代

*連絡著者: E-mail, lzchen@nankyudai.ac.jp

雑種の固定による種子生産のコストダウンや,育種途 中の有望な系統の固定による品種育成の年限の大幅な 短縮,さらに栄養繁殖性植物の種子繁殖性植物への 転換が可能となるなど,「緑の革命」以上の経済効果 が期待されている^{1~5)}.これまでに著者らの研究室で は、イネ科暖地型牧草のギニアグラスを用いて、有性 生殖性とアポミクシス性系統の生殖様式をそれぞれ

観察した、その結果、有性生殖と同様に、大胞子形成 までは同じ生殖過程を辿ったが、その後、アポミクシ ス系統では、大胞子が退化か崩壊すると同時に、 周り の珠心組織の体細胞が肥大してアポスポリー性胚嚢始 原細胞(AIC)となり、体細胞胚嚢を形成して、また 開花当日までに子房が成長し続けている間にその体細 胞の数が増え続けていたことを突き止めた 6,7). これ は有性生殖とアポミクシスとの最も異なる現象を発見 したと言える. それはアポミクシス遺伝子の発現と関 連があると考えた. その結果をもとに子房長を指標と して AIC 出現前後の発育ステージの子房をサンプリ ングして, Differential screening (DS) 法を用いて AIC ステージ特異的遺伝子(ASG-1)を単離することに成 功した^{8,9)}. ASG-1のアミノ酸配列を用いて相同性検 索したところ,種子特異的な RD22 (シロイヌナズナ の干ばつ誘導遺伝子),ソラマメの種子タンパク質先 駆物質と関連していることが分かった^{10,11)}. ASG-1の 機能解析を行うため,遺伝子組み換え実験を行う必要 がある. 今まで, ギニアグラスでは, 葉鞘培養 12), 子 房培養13),種子培養14)から植物体再生に成功してい るが、ギニアグラスの遺伝子組換え方法で実用的で効 率の良い方法は確立されていない.一方, ギニアグラ スと同じイネ科のイネ (Oryza sativa) では、日本イ ネ 15) とインドイネ 16) で,アグロバクテリウム法で形 質転換体を得た報告があり. さらに. バイナリベクター pSMA35H2-NGを用いた効率のいいアグロバクテリ ウム形質転換システムが、Toki et al.¹⁷⁾によって確立さ れている.

本研究は、イネのアグロバクテリウム法(Dr.Toki, NIAS, Japan)と、pSMA35H2-NGバイナリベクター (kindly provided by Dr.Ichikawa, NIAS, Japan)を用い て *ASG-1*を用いた組換えイネの植物体を得たので報 告する.

材料及び方法

1) 予備実験

予備実験の材料として,イネ(*Oryza sativa* L.)品種 '日 本晴'と 'アケノホシ'の種子を用いた.

種子を70%エタノールで表面殺菌し,Tween20を含 む2.5%次亜塩素酸ナトリウム溶液で15分間滅菌,滅 菌水で3回すすいで洗浄.種子を濾紙に置いて水分を +分に除去した後,カルス誘導培地(N6D 培地)¹⁸⁾ に播種してカルスを誘導した.培養方法は,Toki,et al.¹⁷⁾の方法に準じた.そして,培養4週間後にGUS 遺伝子導入実験に用いた.

一方,ギニアグラス(Panicum maximum)は、南九 州大学環境園芸学部付属フィールドセンターの圃場 で栽培している有性系統のN68/96-8-o-5,N68/96-8-o-7と条件的アポミクシス系統のN68/96-8-o-11の葉 鞘をカルス形成に用いた。カルス誘導法は、Chen et al.¹⁹⁾の報告に従った.6~8週間後にGUS遺伝子導入 実験に用いた。

バイナリベクターの pIG121 Hm (Fig. 1) と pSMA35H2-NG (Fig. 2) はそれぞれ,名古屋大学(中村博士)と 農業生物資源研究所(市川裕章博士)に提供してい ただいた.ハイグロマイシン抵抗性遺伝子(*hpt*)と, GUS を含む2つのベクターを,それぞれアグロバクテ リウムの EH101と GV3101/pMp90(市川裕章博士提 供)の中に導入して,GUS 遺伝子導入に用いた.ア グロバクテリウムの感染と除去,GUS 染色は農業生 物資源研究所土岐精一博士ならびに市川裕章博士との パーソナルコミュニケーションにより提供された方法 に従って行った.

2) pSMA35H2-NG へ ASG-1 の構築

予備実験で pIG121 Hm より pSMA35H2-NG が供 試した2種類の植物で高い感染率を得た結果から, pSMA35H2-NG を *ASG-1* 遺伝子組換え実験に用いた. *ASG-1* の塩基配列は GenBank/EMBL/DDBJ(AB000809) を参照した. pSMA35H2-NG へ *ASG-1* の構築は GUS のカセットを *ASG-1* cDNA と置換した後(Fig. 3), そ の *ASG-1* のカセットをアグロバクテリウム GV3101/ pMp90 に導入して組換え実験に供した.

3) 遺伝子組換え植物の選抜と植物体再生

'日本晴'の種子を,予備実験と同様の方法でカル ス形成に用いた.その後,GV3101/pMp90と3日間 共存培養し,カルベニシリンニナトリウム塩(CDS) を500mg/1含む滅菌水で洗浄し,除菌した.そして, 300mg/1のCDSと50mg/1のハイグロマイシンBを 含むN6D選抜培地へ移植して,30℃,16時間日長 (3,000lux)で4週間培養(培養2週間で継代培養)を 行った.

選抜した遺伝子組換えカルスは、300 mg/1 の CDS と

Fig. 1. Diagram of pIG121Hm. LB and BR, T-DNA left- and right-border repeats; NPTII, neomycin phosphotransferase II gene; GUS, ß-glucuronidase; HPT, hygromycin phosphotransferase; NOS, nopalinthyntase; 35S, 35S promotor; TNOS, signal of 3'-nopalinthyntase; T35S, signal of 35S 3'- RNA; B, BamHI; E, EcoRI; H, HindIII; S, SalI; Sc, SacI; X, Xba.

50 mg/1のハイグロマイシンBを含む Regeneration Ⅲ培地 (Murashige & Skoog 1962) へ移植して、上述と同じ 環境下で6週間培養 (培養3週間で継代培養)を行った.

その後、シュートが1cm以上生長したら、ホルモンフリー培地へ移植・培養して、植物が十分に成長したら、ポットに移植して、28℃、16時間日長(10000 lux)で開花・結実させた. T₀植物から得られた種子は、再播種を行って T₁植物を形成させた.

4) 遺伝子組換え植物の DNA 分析

上述で得られた形質転換イネの T₀,T₁植物の葉とカル スと,アポミクシス系統のギニアグラスのカルスを用 いて,DNA ミニプレート法で DNA 抽出を行った²⁰. プライマーは *ASG-1* 配列(Fig. 4; Table 1)とハイ グロマイシン B 配列(Fig. 5; Table 1)に従って設計 した.PCR は95℃,1分の後,94℃,30秒,52℃,30秒, 72℃,1分を35サイクル行い,最後に72℃,5分,4℃ ∞で保持した.PCR 産物は1.5%アガロースゲルで電

Fig. 2. Diagram of pSMA35H2-NG. *spR: Spectinomycin/streptomycin resistance* gene from Tn7; *staA*: Region involvedin plasmid stability from *Pseudomonas* plasmid pVS1; *repA*-HC: *replication protein A gene* from pVS1 (high-copy type) for plasmid maintenance in *Agrobacterium*; ColE1 *ori*: ColE1 replication origin from pBR322; TRbcS: Polyadenylation signal from *Arabidopsis RbcS-2B* gene.

Fig. 3. Construct for ASG-1 using binary vector of pSMA35H2-NG. spR: Spectinomycin/streptomycin resistance gene from Tn7; staA: Region involved in plasmid stability from Pseudomonas plasmid pVS1; repA-HC: replication protein A gene from pVS1 (high-copy type) for plasmid maintenance in Agrobacterium; ColE1 ori: ColE1 replication origin from pBR322; TRbcS: Polyadenylation signal from Arabidopsis RbcS-2B gene.

513 bp ATG HM-L► 1026 bp ◄HM-R

Fig. 5. Locations of the primers designed according to hygromycin B gene. The primer sequences of HML and HMR referred from Table 1.

Fig. 4. Locations of the primers designed according to *ASG-1* gene. The primer sequences of A1, A2, A3, S1, S2, and S3 referred from Table 1.

Table 1.	Primers'	sequences	designed	according	to ASG-1 gei	ne

Primer name ^a	Sequence $(5' \rightarrow 3')$	Length	Tm
ASG-1-S1	atggcattcgtgatggga	18	60.88
ASG-1-S2	gggtaaaaccttccccatgt	20	59.92
ASG-1-S3	gttctagccccgtcgattc	19	59.64
ASG-1-A1	cctcttgccaaagatcacg	19	59.38
ASG-1-A2	atcgacggggctagaacct	19	60.99
ASG-1-A3	aggttttaccctcgagcaca	20	59.73
HM-L	cgcaaggaatcggtcaatac	20	60.47
HM-R	tttgtgtacgcccgacagt	19	60.17

^a*ASG-1*: apomixis specific gene-1 (*Chen et al.*1999). The primers associated with Fig. 4 and 5

気泳動して, *ASG-1* とハイグロマイシン B の特異的な バンドを観察した.

結果および考察

1) 予備実験

遺伝子形質転換の効率を確認するために, GUS を レポーター遺伝子として用いた実験では, ベクター2 種類とも (Fig. 1 and Fig. 2), イネ種子培養から得ら れたカルス (Fig. 6 A-B) と胚形成カルス (Fig. 6 C-D) に GUS 発現が見られた. しかし, ギニアグラスのカ ルスと胚では, pSMA35H2-NG/GV3101/PMP90を用

Fig. 6. GUS expression in calli from matured seed culture of rice and leaflets of Guinea grass. A and C: callus and embryogenic callus from seeds of rice; B and D: GUS expression in calli from A and C, respectively; E, F and G: GUS expression in calli in different developmental stages from leaflets of guinea grass, respectively.

	pIG120Hm/EHA101		pSMA35H2-NG/GV3101/PMP90	
Materials ¹⁾	No. cali	No. expressed (%)	No. cali	No. expressed (%)
Guinea grass				
N68/96-8-0-7(S)	67	0 (0)	48	36 (75.0)
N68/96-8(S)	55	0 (0)	32	12 (37.5)
N68/96-8-0-11(A)	30	0 (0)	24	17 (70.8)
Rice				
'Nipponbare'	75	37 (49.3)	82	58 (70.7)
'Akenohoshi'	95	62 (65.3)	92	68 (73.9)

 Table 2. Comparison of expression effisiencies of twe kinds of binary vectors on guinea grass and rice using Agrobacterrium mediated methed

¹⁾ For guinea grass, all are the accessions, and S means sexual and A apomictic accessions. And for rice, they are the varieties

Fig.7. Plant regeneration and morphologies of transgenic rice of ASG-1 from matured seeds. A-E: Callus formation from matured rice seeds cultured on N6D medium; F: Calli used for transformation of GUS and ASG-1; G: GUS expression in calli; H-J: ASG-1 transgenic rice regenerated on regeneration medium; L-M: Transgenic plants growing and ripening.

Fig. 8. Detection of *ASG-1* in recombinant calli of guinea grass and rice by PCR analysis. Lanes L, 1, 2 were size markers; Lanes 3, 4 were recombinant rice and guinea grass, respectively.

いた系で GUS の発現が見られたが (Fig. 6 E, F, G), pIG120Hm/EHA101系では見られなかった. さらに, 感染率を調査すると, pIG120Hm/EHA101を用いた場 合, ギニアグラスのいずれもの系統でも0%で, イネ の2品種では、49.3%~65.3%であった.pSMA35H2-NG/GV3101/PMP90を用いた場合、ギニアグラスでは、 37.5%~75.0%で、イネでは、70.7~73.9%であった. pIG120Hm/EHA101よりもpSMA35H2-NG/GV3101/ PMP90の発現率が高いことがわかった(Table 2).

これらの結果から pSMA35H2-NG/GV3101/PMP90 形質転換系は、イネとギニアグラスの両方に適用でき ることが示されたため、それを ASG-1 遺伝子組換え に用いた.いままでに、トールフェスク²²⁾ など他の 牧草では成功しているが、ギニアグラスで十分に働く アグロバクテリウム法は確立していないため、これら の結果は、これからのギニアグラスの形質転換実験に 重要な情報となるであろう.

2) ASG-1 遺伝子組換えイネの植物体再生

イネの完熟種子をN6D培地で培養3~4週間でカ ルスを誘導した(Fig. 7 A-D).その後、さらに3週間 培養を行った後、20%のカルスの表面が白く、コンパ クトで多数の胚様態を含む胚形成カルスが誘導された (Fig. 7 E-F).この際、感染効率を確認するために、こ れらのカルスの一部をGUS実験に用いた結果、表面 上に青い斑点が現れた(Fig. 7 G).ここで予備実験と 同じ効果が得られることを確認できた.その後、残っ たカルスをASG-1 組換え実験に用いて、Regeneration III 培地に移植した.そして、シュートが現れ、植物体 に生長した(Fig. 7 H-K).鉢あげしたのち、グロース チャンバーの中で順化して栽培した(Fig. 7 L-M).

PCRによる組換えイネでのASG-1とハイグロマ イシン遺伝子の確認

まず,A1とS1のプライマー(Table 2)を用いて, 遺伝子組換えイネ ToとN68/96-8-o-11のカルスから

Fig. 9. *ASG-1* specific band patterns in PCR products of transgenic rice plants based on the primers of S1 and A1, S1 and A2, and S2 and A2, respectively (Fig. 4). Lane M: 100 bp ladder; lane 1 to 11: transformant No.; lane 12: guinea grass N68/96-8-4-16; lane13: guinea grass N68/96-8-o-7; lane14: guinea grass N68/96-8-o-11; lane15: guinea grass N68/96-8-o-5; lane16: plasmid (pSMA134S2).

Fig. 10. Hygromycin B specific band patterns, and randomly band patterns in region between Hygromycin B and ASG-1 in PCR products of transgenic rice plants based-on the primers in Fig. 5. Lane M: 100 bp ladder; lane 1 to 11: transformant No.; lane 12: guinea grass N68/96-8-4-16; lane13: guinea grass N68/96-8-o-7; lane14: guinea grass N68/96-8-o-11; lane15: guinea grass N68/96-8-o-5; lane16: plasmid (pSMA134S2)

抽出した DNA を PCR に用いたところ, *ASG-1* 特異的 なバンドがそれぞれのサンプルから検出され,遺伝子 導入されたことが示唆された (Fig. 8).

続いて、イネの T₁遺伝子組換え植物を用いて PCR を行った.その結果、S1と A1の間で903 bp、S1と A2の間で581 bp、S2と A2の間で294 bpの ASG-1 特 異的なバンドがそれぞれ得られた(Fig. 9).HMLと HMRの間でハイグロマイシン Bの特異的なバンドが 513 bp あたりで現れた(Fig. 10).

今回得られた遺伝子組換えイネとその後代の形態学 的変化について,引き続き観察を行うと同時に,今回 確立できた ASG-1 遺伝子導入システムを用いて ASG-1 の機能解析を行うため,有性生殖のギニアグラスに ASG-1 の導入実験を実行中である²¹⁾.

要 約

これまでに本研究室でイネ科暖地牧草であるギニ アグラスから単離したアポミクシス性特異的遺伝子 ASG-1の機能解析を行うため、本実験では、アグロバ クテリウム法と, pSMA35H2-NG バイナリベクターを 用いて ASG-1 組換えイネの植物体再生を試みた.そ の結果,1)予備実験では、アグロバクテリウム法と pSMA35H2-NG バイナリベクターを組み合わせた試験 で, β-glucuronidase (GUS) リポーター遺伝子は、イネ とギニアグラスで発現することが確認できた.2)そし て,GUSと同じ形質転換システムを用いて,完熟種 子由来カルスの培養で ASG-1 遺伝子組換えイネを得 た.3) ToカルスとTiイネにASG-1の有無の確認は, ASG-1とハイグロマイシンBの塩基配列に従って設計 したプライマーを用いた PCR によってそれぞれの特 異的なバンドを確認した.本研究で得られたこれらの 技術は今後のASG-1を用いた機能解析に重要な手段 となると考える.

謝 辞

本研究の組換え実験で使ったバイナリベクターの pIG121 Hm と pSMA35 H2-NG はそれぞれ名古屋大学 (中村博士) と 農業生物資源研究所(市川博士)に提 供していただいた.また,イネのアグロバクテリウム の感染,除去および GUS 染色は農業生物資源研究所 土岐博士ならびに市川博士から提供されたプロトコー ルを使用した.ここに深く感謝の意を申し上げる.

参考文献

- 1) Ravi, M., Marimuthu, M.P.A., Siddiqi, I. (2008) Gamete formation without meiosis in *Arabidopsis*. *Nature* **451**: 1121-1124.
- 2) Asker, S.E. (1979) Progress in apomixis research. *Hereditas* **91**: 231-240.
- 3) Nakajima, K., Mochizuki, N. (1983) Degrees of

sexuality in sexual plants of guineagrass by the simplified embryo sac analysis. *Jpn J Breed.* **33**: 45-54.

- 4) Nogler, G.A. (1984) Gametophytic apomixis. In: Johri BM (ed) : Embryology of angiosperm. Springer-Verlag, Berlin, pp.475-518.
- 5) Bicknell, R.A., Koltunow, A.M. (2004) Understanding apomixis: Recent advances and remaining conundrums. *Plant Cell* 16: S228-S245.
- 6) Chen, L.Z., Kozono, T. (1994a) Cytology and quantitative analysis of aposporous embryo sac development in guineagrass (*Panicum maximum* Jacq.). Cytologia **59**: 253-260.
- 7) Chen, L.Z., Kozono, T. (1994b) Cytological evidence of seed-forming embryo development in polyembryonic ovules of facultatively apomictic guineagrass (*Panicum maximum* Jacq.). *Cytologia* **59**: 351-359.
- 8) Chen, L.Z., Miyazaki, C., Kojima, A., Saito, A., Adachi, T. (1999) Isolation and characterization of a gene expressed during the period of aposporous embryo sac initial cell appearance in guineagrass (*Panicum maximum* Jacq.). J Plant Physio. 154: 55-62.
- 9) Chen, L.Z., Guan, L.M., Seo, K., Hoffmann, F., Adachi, T. (2005) Developmental expression of ASG-1 during gametogenesis in apomictic guinea grass (*Panicum maximum*). J Plant Physio. 162: 1141-1148.
- 10) Yamaguchi-Shinozaki, K., Shinozaki, K. (1993) The plant hormone abscisic acid mediates the droughtinduced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in *Arabidopsis thaliana. Mol Gen Genet.* 238: 17-25.
- 11) Baumlein, H., Boerjan, W., Bassuner, R., van Montagu, M., Inze, D., Wobus, U. (1991) A novel seed protein gene form *Vicia fava* is developmentally regulated in transgenic tobacco and *Arabidopsis* plants. *Mol Gen Genet.* 25: 459-467.
- 12) Chen, L.Z., Okabe, R., Guan, L.M., Adachi, T. (2002) A simple and efficient culture of leaflets for plant regeneration in guineagrass (*Panicum maximum*). *Plant Biotech.* 19 (1): 63-68.
- 13) Chen, L.Z., Okabe, R., Hamaguchi, T., Guan, L.M., Adachi, T. (2002) Effect of harvest seasons on the efficiency of ovary culture in *Panicum maximum. Plant Biotech.* 19: 173-179.
- 14) Chen, L.Z., Nishimura, Y., Umeki, K., Zhang, J., Xu, C.T. (2015) Establishment of a Simple Plant Regeneration System Using Callus from Apomictic and Sexual Seeds of Guinea Grass (*Panicum maximum*). *British Biotech J.* 7: 183-190.
- 15) Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. (1994) Efficient transformation of rice (*Oryza sativa* L.)

mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. *Plant J.* **6**: 271-282.

- 16) Rashid, H., Yokoi, S., Toriyama, K., Hinata, K. (1996) Transgenic plant production mediated by *Agrobacterium* in *indica* rice. *Plant Cell Reports* 15: 727-730.
- 17) Toki, S., Hara, N., Ono, K., Onodera, H., Tajiri, A., Oka, S., Tanaka, H. (2006) Early infection of scutellum tissue with *Agrobacterium* allows high-speed transformation of rice. *Plant J.* 47: 969-976.
- 18) Chu, C.C., Wang, C.S., Sun, C.C., Hsu, C., Yin, K.C., Chu, C.Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. *Sci Sinica* 18: 659-668.
- 19) Chen, L.Z., Anami, E., Guan, L.M., Adachi, T. (2001)

Somatic embryogenesis and plant regeneration from leaflets of "Nanou" bahiagrass. *Plant Biotech.* **18**: 119-123.

- 20) Gotou, Y. (2005) Extraction method of DNA and RNA for Arabidopsis. Pp. 90-92. In: Okada T, Shimamoto K, Tabata T (eds.): Protocols for model plants (Rice, *Arabidopsis* and Legume). Shujunsha, (in Japanese)
- 21) Nishimura, Y., Umeki, K., Zhang, J., Xu, C.T., Chen, L.Z. (2015) The functional analysis of apomixis specific genes: Establishment of plant regeneration system using callus induced from seeds of guineagrass (*Panicum maximum*). Bull Minami Kyushu U. 45: 9-16.
- 22) Wang, ZY. (2009) Toll fescue for the twenty-first century (Fribourg HA et al., eds.), *Agronomy Monograph.* **53**: 398-406.